A uniqueness theorem for entire functions of two complex variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth analysis of entire functions of two complex variables

In this paper, we introduce the idea of generalized relative order (respectively generalized relative lower order) of entire functions of two complex variables. Hence, we study some growth properties of entire functions of two complex variables on the basis of the definition of generalized relative order and generalized relative lower order of entire functions of two complex variables.

متن کامل

growth analysis of entire functions of two complex variables

in this paper, we introduce the idea of generalized relative order (respectively generalized relative lower order) of entire functions of two complex variables. hence, we study some growth properties of entire functions of two complex variables on the basis of the definition of generalized relative order and generalized relative lower order of entire functions of two complex variables.

متن کامل

On some results of entire functions of two complex variables using their relative lower order

Some basic properties relating to relative lower order of entire functions of two complex variables are discussed in this paper.

متن کامل

Some inequalities in connection to relative orders of entire functions of several complex variables

Let f, g and h be all entire functions of several complex variables. In this paper we would like to establish some inequalities on the basis of relative order and relative lower order of f with respect to g when the relative orders and relative lower orders of both f and g with respect to h are given.

متن کامل

A Theorem on Entire Functions

Let G(k) = ∫ 1 0 g(x)e kxdx, g ∈ L1(0, 1). The main result of this paper is the following theorem. THEOREM 1. There exists g 6≡ 0, g ∈ C∞ 0 (0, 1), such that G(kj) = 0, kj < kj+1, limj→∞ kj =∞, limk→∞ |G(k)| does not exist, lim supk→+∞ |G(k)| = ∞. This g oscillates infinitely often in any interval [1− δ, 1], however small δ > 0 is. MSC: 30D15, 42A38, 42A63

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1991

ISSN: 0022-247X

DOI: 10.1016/0022-247x(91)90249-y